BNL-64804 (Abstract)

NO_y LIFETIMES AND O₃ PRODUCTION EFFICIENCIES IN URBAN AND POWER PLANT PLUMES: ANALYSIS OF FIELD DATA

L. J. Nunnermacker, P. H. Daum, D. Imre, L. Kleinman, Y.-N. Lee, J. H. Lee, S. Springston, and L. Newman

American Geophysical Union Fall Meeting, San Francisco, CA, December 8-12, 1997.

Ozone production efficiency with respect to NO_x , (OPEx), is a central quantity in emission control strategies since it is a measure of how many O_3 molecules are produced by each NO_x before it is lost from the catalytic cycle producing O_3 . OPEx has custmarily been estimated from the relationship between O_3 and NO_z (where NO_z is defined as the concentration of NO_x oxidation products). This procedure implicitly assumes that NO_y is a conserved quantity and that the measured NO_z concentrations are an adequate surrogate for the quantity of NO_x that has been consumed. Although it has been recognized that the OPEx derived in this way may be over-estimated, the effect has for the most part been neglected. Here we examine several ways of estimating the NO_z loss rate and determining the true OPEx, and compare the OPEx of the Nashville urban plume, to the OPEx in plumes from several power plants in the Nashville area.

Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.